S. The local multiplicity of a
holomorphic map

It is proved in this Chapter that the algebraic multiplicity of a holomorphic
map coincides with its geometric multiplicity, that is with the index of the
singular point of the corresponding holomorphic field. Although this result was
known classically it seems that a detailed proof was published only in the paper
[139] of V. P. Palamodov. The idea of the elementary proof presented below
is due to A. G. Kushnirenko [106].

The index of a singular point of a real vector field can be computed as the
signature of an appropriate quadratic form on the local algebra of the singularity
(the formula of Levine-Fisenbud—Khimshiashvili [62], [97]). We prove this
formula, based on nondegenerate quadratic forms on local algebras (Grothen-
dieck duality) with the help of an n-dimensional generalisation of the theorem
of Abel on the trace of a holomorphic form.

5.1 Multiplicity

Let /:(C", a)—(C", 0) be a holomorphic map-germ at a point a. Consider the
algebra C{x}, of all holomorphic function-germs at a. The germs of the com-
ponents of f generate an ideal Iy 4 1n this algebra.

Definition: the multiplicity of the germ f at the point a is the dimension of its
local algebra

Ml f] = dimeQra: Qra = C{ -’Cj'af"lj'-a-

A germ is said to be of finite multiplicity if its multiplicity is finite.

Example 1: If f is a nondegenerate linear operator then its multiplicity at 0 is
equal to 1.

Example 2: Let fi = x;x3, 3 = x? + x. We associate to the monomial xkexcke
the point (ki k») of the integral lattice (Fig. 37a). We then note the monomials
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belonging to the ideal I = (1, f3). All the monomials in the hatched region of
the figure belong to it together with x,x3. The binomial f; is formed by the
segment with end-points (2, 0) and (0, 3). By moving this segment one place to
the right we may convince ourselves that x3 € I and by moving it up two places
that x3el. Therefore all the monomials in the region hatched in Fig. 37b lie
in [. In Fig. 37c seven monomials are indicated determining a C-basis for the
algebra Q. Thus u[f] = 7.

Example 3: Let /i = x3 — x1x2, f2 = xy x5 — x3. Again we represent fi and f> by
segments (Fig. 38a). The vertices of the zigzag path in Fig. 38a correspond to
monomials which are congruent modulo the ideal I = (f, f2). Therefore X1%3
is congruent to monomials of arbitrarily high degree modulo . It is not difficult
to verify that x, xj € (for example, this is clear from the fact that x1x3=x;x3x,
mod I).

Therefore all the monomials in the region hatched in Fig. 38b lie in the ideal.
A basis for Qo is generated by the five monomials enclosed in Fig. 38c, ulfl1=5.
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5.2 The index is equal to the multiplicity

Definition: The index ind[ f] of a map-germ f at a point a is the degree of the
mapff|[ f]:S7"~1 - 82"~ 1 ofa sufficiently small sphere || x — a || = ¢in the source
space to the unit sphere in the image space.

If there is a neighbourhood of a in which there is no inverse image of 0 apart
from possibly the point a itself then the index is well-defined (does not depend
on the choice of the small sphere S2"~'). The index of a germ at a non-isolated
zero is not defined. The multiplicity and index of a root g of a system of holo-
morphic equations f; = ... = f, = 0, defined in a neighbourhood of a are just
the multiplicity and index of the map-germ f = (fi, ..., f,) at a.

Theorem 1: The index of a holomorphic germ of finite multiplicity is equal to its
multiplicity.

Theorem 2: 4 holomorphic map-germ fails to be of finite multiplicity at a point a, if
and only if a is a non-isolated inverse image of zero of the germ.

The proof of Theorem 2 is given in Section 5.9, The proof of Theorem 1 is
given below. It is based on Propositions 1°-7°, formulated below and proved

in Sections 5.3-5.8.

(1")  The universality of the Pham map.

Definition: The map ®™: C" - C", defined by the formulas

m

Vi = B ony oS K8

is called the Pham map.

Definition: Two germs fand g at a point a are said to be algebraically equivalent
or, briefly, A-equivalent, if there is a germ of a holomorphic family of linear
nondegenerate maps A(x)e GL(n, C€) such that f(x) = A(x)g(x).
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Proposition: Let f:(C", 0)— C" be a map-germ of finite multiplicity. Then there
exists a Pham map @™ such that far 0 is A-equivalent to the map-germ @7 = ©™ + ¢f
for arbitrary e # (.

In other words, by a small deformation of a Pham map one can obtain any
germ of finite multiplicity (up to A-equivalence).
(2 Proposition: The index and multiplicity ar O of the Pham map coincide.
(3°)  Proposition: The indices of A-equivalent germs are equal.

(4°)  Proposition: The multiplicities of A-equivalent germs are equal.

(5°)  Additivity of the index: Let a system of n holomorphic equations in C"
depend holomorphically on a parameter.
Under changes of parameter a multiple root of the system may decompose.

Proposition: The sum of the indices of the roots, formed by the decomposition of a
multiple root of the system, is equal to the index of that root.

(6°)  Subadditivity of the multiplicity.

Proposition: The sum of the multiplicities of the roots, formed by the decomposition
of a multiple root of the system, does not exceed the muitiplicity of that root.

{77y Proposition: The multiplicity of a root is not less than its index.

Proof of Theorem 1: Let f:(C", 0)—(C", 0) be a map-germ of finite multiplicity.
Choose a Pham map @ such that the germs f and ©. = ® + &f at zero are
A-equivalent for & #£ 0 (by 17). Choose a sufficiently small neighbourhood U
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of 0. Choose a sufficiently small &U) > 0. Consider the deformed Pham map
®, = V. Let a; be the roots of the system ¥ = 0, lying in the neighbourhood U.
We obtain a chain of relations:
wo[®] 2 Zpa [¥]  (by 6%,
(1) pa[W]2Zind, [¥] (by 7°),
Tind, [W] = indo[P] (by 5%,
indo[®] = po[P] (by 2°).

From this chain it follows that all the inequalities in it are equalities. Since
/10) = 0, among the roots a; i3 the point 0. Consequently

uo[¥] = indo[V]

(since the inequality (1) has become an equality). But, since the germs f and ‘¥
are A-equivalent, we have

ol f] = po[¥] (by 3°),
indo[ /] = indo['¥] (by 4°).

Thus Theorem 1 has been proved in the case that f{0) = 0. On the other hand
if f(0) £ 0 then, as is easily proved,

ol f] = indo[f] = 0.

5.3 The index of a real germ

The index is defined not only for holomorphic germs but also for smooth maps
of real spaces.
Let f3(R", a)— R" be a smooth germ at a point a.

Definition: The index ind,[ /] is the degree of the map f/|f|:S7"' >8] ' of a
sufficiently small sphere || x —a|| = ¢ in the source space to the unit sphere in
the target space.

The index is not defined if a is a non-isolated zero of f.
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Example: If f(0) = 0 and the Jacobian matrix of f"at 0 is nondegenerate then
the index of 0 is equal to plus or minus unity, depending on the sign of the
Jacobian.

Suppose that in a closed ball B = R” there are no zeros of the mapf:(R",0) - R"
except possibly the point 0 and let £, be an arbitrary smooth deformation of f;

Proposition 1: For sufficiently small ¢ the sum of the indices of the zeros of the
disturbed map f, in B is equal to the index of 0 of the original map f, provided that
the number of these zeros is finite.

In fact: (1°) All the maps o, =f/llfe|:0B— 8", for sufficiently small ¢, are
mutually homotopic. (2°) The degree of the map ¢, is equal to the sum of the
indices of the zeros of the map f; in the ball B.

Corollary: The index of the point 0 of the map fis equal to the number of preimages
in B of an arbitrary sufficiently small regular value ee R", counted with the sign
of the Jucobian at these points.

For the proofit is sufficient to apply to the deformation f, = f— ¢ the assertion
of Proposition 1 and to use the computation of the index of a nondegenerate zero.

Definition: Two germs £, g:(R", 0) > R" are said to be real A-equivalent if there
is a germ of a smooth family of linear maps A(x):R" — R" such that det 4(0) > 0
and g(x) = A(x)f(x).

Proposition 2: The indices of real A-equivalent germs are equal.

Proof: Since det A(0) > 0, it is possible to Join A with E by a homotopy A4, with
det A(x) > 0. The homotopy g, = Acfjoins g to fand has no zeros on the small
sphere.
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5.4 The index of a holomorphic germ

Proposition 1: The determinant of the real form A:R*—=R>" of a non-
degenerate complex linear map A:C" — C" is positive,

Proof: det A = |det A|? (the formula is obtained by a direct computation with
respect to a basis in which the matrix 4 has triangular form).

[A second proof: (1°) The set of nondegenerate linear operators A:C"— C”
is connected. For the proof it is sufficient to join two nondegenerate matrices
by a complex line; it intersects the set of degenerate matrices in not more than n
points. (2°) Join a nondegenerate complex operator to 1 by a path consisting
of nondegenerate complex operators. The real forms of these operators are non-
degenerate (since nondegeneracy means invertibility). Consequently the deter-
minants of all these real forms are positive.] |

Corollary: A-equivalent holomorphic germs have the same index.

Proof: The real forms of holomorphic 4-equivalent germs are real 4-equivalent.
In fact if g = Af then the real form § = Af and det 4(0) > 0.

Let B be a closed ball with centre at the point aeC". Suppose that the
holomorphic map f is nowhere zero on B\a.

Proposition 2: The index at a of the germ of f is equal to the number of preimages
in B of an arbitrary sufficiently small regular value e.

Proof: The index is equal to the number of preimages of ¢, counted with signs
of the Jacobian of f(see Section 5.2). According to the Lemma this sign is always
positive.

Remark: Consider a holomorphic map of a 2n-dimensional compact domain in
C", not having a zero on the boundary of the region. Then the degree of the map
SIS of the boundary to Si"~' is non-negative because this degree is equal
to the number of preimages of e.
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Proposition 3: Suppose that a map has no zeros on the boundary of a bounded
domain U < C" and that the degree of the map g/ || g | of the boundary of U to the
unit sphere is equal to k. Then the system g = 0 has a finite number of roots in U
and the sum of their indices is equal to k.

Proposition 3 follows from the following Lemma.

Lemma: Under the conditions of Proposition 3 the number of geometrically distinct
solutions of the system g = 0 in U does not exceed k.

Proof: Suppose that the system has k + 1 roots ay, ..., dk+1.

(1°) There exists a polynomial map P:C"— C", for which the points ay, ..., ax+1
are nondegenerate roots.

(2%) The map g. = g + P has nongenerate roots at the points ay, ..., ax+, for

almost all values of e.
(3") For small || the index of the map g./ || g. || of the boundary of U is equal to k.
(4") Choose a small ¢, for which the roots a; of the map g are nondegenerate.
Surround a; by small balls B;, not containing any other zeroes of the map g..
The degree of the map g./||g.| of the sphere ¢B; to §7" ! is equal to 1 and
consequently the degree of the map w@B; to §2"! is equal to k + 1.
Consider the domain U’ = U\ uUB,;. The degree of the map of the boundary
of this region is nonnegative (see the Remark above); on the other hand this
degree is equal to k — (k + 1) = — 1. Contradiction.

Corollary 1: The index of a root is strictly positive.

For the proof one has to apply the Lemma to a ball containing a single root
of the system.

Corollary 2: On the decomposition of an isolated root a finite number of roots are
Jormed and the sum of their indices is equal to the index of the decomposed root.

Corollary 3: Under the conditions of Proposition 3 the index of each root does not
exceed k.
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5.5 Multiplicity and 4-equivalence

Proposition 1: The multiplicities of A-equivalent germs are equal.
In fact the ideals I, and I, of A-equivalent germs f and g coincide.
Proposition 2: Suppose that a germ f has multiplicity u and that the germ g differs

Jrom the germ f by small terms of order u+ 1. Then the germs g and f are A-
equivalent.

Corollary: Suppose that the Jacobian matrix of the germ f at 0 is non-degenerate.
Then its multiplicity is equal to 1.

In fact this is clear for a linear map and a nonlinear map differs from a linear
one by small terms of the second order.
Proposition 3: A root of finite multiplicity of a system of holomorphic equations is
isolated.

For the proofs of Propositions 2 and 3 we require the

Lemma: Let the germ f have multiplicity p. Then the product of any p function-
germs, each taking the value O at 0, is contained in the ideal I .

Proof of the Lemma: For the product ¢;-... @, we construct u + 1 germs 1,

®1, P12, .-, P1°...- @, These germs are linearly dependent in the ring Qy,

that is there exist nontrivial linear combinations
Cotcir+...Fcupr ... pu€ly.

Let ¢, be the first coefficient different from zero; then

Q1. @er e+ 1@ret+ o Cu@rrr. @) ELS

The multiplier within the brackets is invertible in the ring C{x}, since ¢, # 0.
Consequently ¢, ... @, and therefore also ¢;-... @, belongs to the ideal I;.
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Proof of Proposition 2: Every function-germ ¢ of order ¢ + 1 can be put in the
form ¢ = Zhifi, where hi(0) = 0 (using the Lemma). Having expressed all the
components of ¢ =g —f in this way we get o = Hf, where H(0) = 0. Con-
sequently, g = (E + H)f, which proves the 4-equivalence of the germs f and g.

Proof of Proposition 3: Suppose that the germ f has multiplicity u at 0. The
germ xj we put in the form x# = Zh;;fi. The region in which the germs h;; and
Ji may be holomorphically continued contains no roots of the system f= 0
other than the point 0.

5.6 Properties of the Pham map

Let f be a map-germ of multiplicity x at 0. Consider the Pham map @™,
m=u+1,..., p+1 and its deformation O = O™ + &f.

Proposition 1: The germ f is A-equivalent at 0 to the germ ®T for all ¢ # 0.

Proof: The germ ¢f'is A-equivalent to fat zero while ®7 differs from ¢f by small
terms of order p + 1.

Proposition 2: The index and the multiplicity at zero of the Pham map are equal
to each other.

Proof: (1°) The index is equal to the number of solutions of the system of
equations x7' =gy, ..., xy» = ¢, for general ¢, ..., & (by Proposition 2 of
Section 5.4). Consequently indo[®™] = my-...-m,.

(2°) The local algebra Qom0 is generated by the monomials x¥'-.. .- x* where
0<k;<mi, ..., 02k, <m, The dimension uo[®™] of this algebra, con-
sequently, is equal to mq ... -my.

5.7 The subaddivity of multiplicity

Let {f;} be an arbitrary deformation of a map-germ f of multiplicity u at zero.
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Proposition 1 (on the subadditivity of the multiplicity): There is a neighbourhood
of zero U in the source space such that for any sufficiently small || the number of
roots of the system f, = O in U, counted with their multiplicities, does not exceed
1

Remark: The multiplicity is subadditive even in the real case, where, unlike the
complex case, 1t i1s not additive.

Corollary: The index of a germ of finite multiplicity is not greater than its multi-
plicity.

For the proof of the corollary it is sufficient to apply the assertion concerning
the subadditivity of the multiplicity to the particular deformation f, = f—&.

Let U = C"be an open set, A(U) the algebra of holomorphic functions, defined
on the set U and I,(U) the ideal of this algebra, generated by functions gy, ..., gn.
The quotient algebra Q,(U) = A(U)/1,(U) is said to be the algebra of the map
g on the domain U.

The polynomial subalgebra Q,[U] of the map g on the domain U is defined
to be the image of the algebra of polynomials in the algebra Q,(U) under the
factoring homomorphism.

The subadditivity of the algebraic multiplicity follows from the following
two propositions.

Proposition 2: For every deformation { 1.} of a map-germ fof multiplicity pat O there
is a neighbourhood U of zero in the source space such that for any sufficiently small
|&| the C-dimension of the polynomial subalgebra of f, on U does not exceed p.

Proposition 3: The number of solutions in U of the system of holomorphic equations
g = 0, taking multiplicities into account, does not exceed the C-dimension of the
polynomial subalgebra of g on U.

Proposition 3 is proved in Section 5.8. For the proof of Proposition 3 we
require an addendum to the Weierstrass Preparation Theorem. Let f be a map-
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germ of finite multiplicity and let ey, ..., e, be functions providing a basis for
its local algebra. According to the Preparation Theorem there is for an arbitrary
holomorphic map-germ a Weierstrass decomposition:

p(x) = Zex)@i(y), ¥ =f(x).

Lemma 1: There exist single neighbourhoods of zero U, and Uy in the target and
source spaces on which the functions figuring in the Weierstrass decompositions of
all the polynomials are simultaneously defined.

Proof: For the domain U, we take the domain on which one can holomorphically
continue the functions ¢, participating in the decompositions of the following
finite set of functions:

Lxe(l<j<n, 1=2k=p)

For the domain U, we take the subdomain of the domain f~!(U,), on which
the functions e, can be holomorphically continued. We proceed by induction
on polynomial degree. Every polynomial P of degree p can be put in the form

P=2Zx;Q0;+c1, degQ;<p.

We put in this representation the Weierstrass decompositions for the Q; and
use the Weilerstrass decompositions of the functions x;e, and 1. We get the
decomposition of Lemma 1.

Consider the deformation {f,}, £¢eC* of the holomorphic map-germ
S(C", 0)—C". Define the map-germ F:(C" x C* 0)—»C" x C* by the formula
F(x, &) = (fi(x), &).

Lemma 2: The local algebras of the germs f and F are isomorphic. If the functions
e1, ..., ey form a basis for the algebra of the germ f then they also form a basis for
the algebra of the germ F.

Proof: The ideal generated by the components Fy, ..., Fn, &1, ..., & of the map
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F in the algebra of holomorphic map-germs at 0eC" x C* coincides with the
ideal generated by the functions fy, ..., fi, &1, ..., &.

Let ey, ..., e, be functions whose germs at 0 form a basis for the local algebra
of the germ f and let {f;} be a deformation of the germ f.

Lemma 3: There is a neighbourhood of zero U = C" such that for all sufficiently
small |¢| the linear envelope of the images of the functions e, ..., e, in the algebra
Qy,(U) contains the polynomial subalgebra Qr [U].

Proof: The functions ey, ..., e, form a basis for the local algebra of the map F
(Lemma 2).

Apply Lemma 1 to the map F. According to this Lemma there is a neighbour-
hood of zero U x V = C" x C* and a ball B in the target space C"** such that:
(1) F(U x V)< B,

(2) in the domain U x V each polynomial P is representable in the form

(*)  P(x)= Y0y e)edx), y=flx)
By Hadamard’s Lemma the functions @; in B are representable in the form

Di(y, &) = cile) + ;JJ:‘DM(% £).

Substitute these decompositions in (*). We get for each polynomial Pin U x V
a representation

%) Py = Yete)etx) + Thix, v i =Fodd)

where h; is holomorphic on U x V.
The second sum belongs to the ideal I (U). The Lemma is proved.

Remark: The linear combination of the functions e; that we have constructed
equivalent to the polynomial P modulo the ideal depends holomerphically on the
parameter e&.

Proposition 2 follows from Lemma 3.
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5.8 The estimate of the number of solutions of a system of equations.

In this section Proposition 3 of Section 5.7. is proved.

Lemma 1: Suppose that the C-dimension of the polynomial subalgebra of the map
g in U is finite. Then every zero of the map g is of finite multiplicity.

Proof: Supposc that a is a zero of the map g. Let ¢, be linear functions taking
the value 0 at a. If the dimension of the polynomial algebra is equal to U, then
the images in it of the u + 1 polynomials 1, @1, @1-@2,..., @1-. .. @, are linearly
dependent. Arguing as in the Lemma of Section 5.5 we find that there exists a
function pe A(U) such that p(a) # 0 and po,-...-@,el,(U). Inverting p in the
algebra of holomorphic function-germs (but not polynomials) at a we get that
@1°... pu€ly,. The lemma is proved.

Lemma 2: The number of different roots of the system g = 0 in U (without taking
multiplicities into account) does not exceed the C-dimension p of the polynomial
subalgebra of the map g in U,

Proof: Let us suppose that there exist u+ | roots ay, ..., a,+;. There exist
polynomials P;, equal to 1 at @; and equal to zero at the remaining p roots.
The images of the 1 + 1 polynomials P; in the polynomial subalgebra are linearly
independent. This contradicts the condition.

Some notations. Let ay, ..., a, be all the zeros of the map g in the domain U.

Definition: The multilocal algebra of the system g = 0 in U is the direct sum of
the local algebras of the germs of g at the points a;.

Notation: AJU) = 3 Qgua,.
i=1

We associate to every function of A(U) the set of its germs at the points a;.
This association induces a homomorphism of the C-algebra A(U) to A U),
which we shall denote by .
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Lemma 3: Suppose that the C-dimension of the polynomial subalgebra of the map
g in U is finite. Then the image of the algebra of polynomials under the homo-
morphism 1 coincides with the multilocal algebra A,(U).

Proof: Let ay, ..., a, be the roots of the map g in the domain U (there are a
finite number of them according to Lemma 2).

Each root g; has finite multiplicity 4 (by Lemma 1). Functions whose jets of
order y; at a; coincide determine the same elements in the local algebra Q..
There exists a polynomial with arbitrary prescribed jets of orders i at the finite
set of points ay, ..., a,.

Proposition 3 follows from Lemma 3, since the ideal I,(U) is mapped to zero
by the homomorphism 7.

5.9 Isolatedness and finite multiplicity

We prove Theorem 2 of Section 5.2. It has been proved that a root of finite
multiplicity of a system of holomorphic equations is isolated (see Section 5.5).
It remains to prove the

Proposition: An isolated root is of finite multiplicity.

Proof: Let 0 be an isolated root of the system f = 0. According to the local
variant of the Hilbert zero theorem there is a number N such that xYelo.
The proposition is proved.

We give now a direct proof, not using the zero theorem.

Suppose that B is a ball in the domain of convergence of the Taylor series
of the germ of fat 0 and that the system f'= 0 has a single root 0 in B.

Lemma: For cach k there is a polynomial map g such that:
(1) the jets of f and g of order k at O are equal,

(2) the germ of g at 0 is of finite multiplicity,

QYIS > 11f—g| on the sphere B.
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Proof: Put g in the form g = fi-; + ex!, where f;; is the Taylor polynomial of
fof degree / — 1>k and x' is the Pham map ®", m =1, ..., I.

(1) The germ of ¢ is of finite multiplicity at zero. Indeed, in the polynomial
subalgebra of g in C" the relations ex' = —f;_ hold true. Using these one can
lower the degree of each polynomial, if its degree in one of the variables is
greater than or equal to I Consequently the dimension of the polynomial
subalgebra is finite and every zero of g is of finite multiplicity (see Section 5.8.).
(27) Choose [ and then ¢ such that || f|| > || f— ¢|| on the sphere dB. The Lemma
is proved.

Proof of the Proposition: Choose a map ¢ for k = indo[ f].

(1) The degree of the map g/ || g || of the sphere 0B to the unit sphere is equal to k
(condition 3).

(2°) indp[g] £ k (Corollary 3 of Section 5.4).

(3%) nolg] = indo[g] < k (Theorem | of Section 5.2).

(4") The germs of f and g are A-equivalent at zero, since they differ by small
terms of order k + 1 or higher (Proposition 2 of Sections 5.5). Consequently
the germ of f at 0 is of finite multiplicity.

5.10 The multilocal algebra of a decomposing root

In Sections 5.3 to 5.8 were verified all the propositions used in Section 5.2 in
the proof of Theorem 1. These propositions also contain additional information.

Suppose that L is a C-linear space, spanned by functions e, ..., ey, whose
germs at zero form a basis for the local algebra of the map f;

Theorem: For each deformation { f.} of the germ of f there is a neighbourhood of
zero U < C* and a neighbourhood of zero V in the parameter space such that for
any eV

(1) the map m:L— Ay (U) is an isomorphism of linear spaces;

(2) each polynomial P in the algebra A(U) is equivalent modulo the ideal I (U)
to a unique element of the space L and this element depends analytically on e.

Proof: (1) follows from the fact that the map n: L — Ay (U) of spaces of the same
dimension is surjective (since the polynomial subalgebra maps “onto”, every
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polynomial is congruent to an element of L). The uniqueness in (2) follows from
(1) and the holomorphicity from the Remark of Section 5.7.

Problem: The isomorphism 7:L — Ay (U) gives the linear space L the structure
of an algebra, depending on the parameter ¢. Show that this structure depends
holomorphically on & (that is that the product of two elements of L depends
holomorphically on &).

5.11 Bilinear forms on the local algebra

Suppose that f(C", 0)—(C", 0) is a map-germ of multiplicity u < co and that
Oy is its local algebra. We define on Q, a family of symmetric bilinear forms
and prove their nondegeneracy.

Consider the Jacobian J = det(éf/dx), computed in some system of co-
ordinates. We shall also denote by J the class of the Jacobian in Qy and call
it the Jacobian.

Theorem 1: The Jacobian does not belong to the ideal Iy

Consider any linear form «:Q, — C. We define a bilinear form B, on Qr by
the formula

B:t(g’ h) = Dt(gh)

Theorem 2: The bilinear form B, is nondegenerate if and only if a(J) 5 0.
The annihilator (annI) of an ideal I is the set of all g such that gi = 0 for all

i in I. The annihilator of an ideal is an ideal.

Corollary 1: If %(J) O then the annihilator of an ideal in Q coincides with its
orthogonal complement with respect to the form B,.

Proof: (1°) If ai = 0 then B,(a, i) = 0.
(2°) If Bu(a, i) = 0 for all i in I but aiy # 0, then by the nondegeneracy of B,
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there is an element ¢ for which Bi(aio, ¢) # 0. But Baaio, ¢} = Baa, igc) = 0,
since igc e l.

Corollary 2: ann(annl) = I.

Proof: (1) = I.

The proof of Theorems 1 and 2 is based on the construction of a special
form B = B,,.

Consider the algebra Q of functions on the u points a;. Take the linear form [
on Q, I(h) = Zela)h(a:), constructed with respect to the “weight function” .
Define the bilinear form B(h, g) on Q by the formula B(h, g) = I(h-g). This form
is nondegenerate if the weight function does not reduce to zero at any of the
points a;.

The local algebra Q, is the algebra of functions on u coincident points. It
can be shown that it is possible to choose ¢ in such a way that for coincidence
of the points the form B on Q has a well-defined limit and is moreover a non-
degenerate form on Q. For this ¢ must tend to infinity on coincidence of the
points (for otherwise the limit form would be degenerate). It can be shown that
it is sufficient to take ¢ = 1/J, where J is the Jacobian of f.

The root 0 of the system f= 0 decomposes into the u roots of the system
S = ¢ for small regular values ¢. Let ay, ..., a, be these roots. For any holo-
morphic function h at 0 we set

I5(h) = Zh(a)/J ().

Proposition 1: As the regular value ¢ tends to zero I%(h) tends to a finite value.

We shall denote this limit by the symbol [h/f].

Example 1: For the function h = gJ the equality [h/f] = ug(0) holds.

Proposition 2: The linear form ao(*) = [-/f] is equal to zero on the ideal I, and
consequently determines a linear form on the local algebra Q.
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Proposition 3: The bilinear form B = B, on the local algebra, constructed from the
linear form «o(-) = [-/f] is nondegenerate.

The proof of Propositions [-3 is given in Sections 5.14-5.18. We derive
Theorems 1 and 2 from them. ‘

Proof of Theorem 1: [J/f] = u # 0. Consequently, J ¢ [, (Proposition 2).

Proof of Theorem 2: Any linear form « on Q has the form «(-) = B(-, «*) (since
the form B is nondegenerate). Therefore B,(h, g) = B(h, ga*). The form B(h, ga*)
is nondegenerate if and only if the element o* is invertible, but a(J) = B(J, «*) =
ua*(0) (Example 1). Therefore o* is invertible if and only if «(J) # 0.

Corollary 3: The ideal generated by the Jacobian in Q; is one-dimensional and does
not depend on the system of coordinates used in the definition of the Jacobian. This
ideal is contained in any nonzero ideal of the algebra Q.

Proof: The equality in Example | shows that the maximal ideal m is the
B-orthogonal complement to the line AJ. This line is therefore an invariantly
defined ideal — the annihilator of the maximal ideal (Corollary 1). For a nonzero
ideal I the inclusion I+ = m holds and consequently the inclusion m* < I.

Remark: The symbol [#/f] admits the integral representation

o 1\ [hdx, A ... A dx,
[mz(%” Fvoe

where the integration is along the small cycle, given by the equations | fi|* = &
(see Section 5.18). One can take this formula as the defintion of the symbol and,
starting from it, prove the properties of the symbol and with them also Theorems
l and 2.
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5.12 The index of a singular point of a real germ

Let f:(R" 0)—(R", 0) be a real-analytic map of multiplicity 4 < oo and let Q;
be its local R-algebra. Choose orientations in both R™s and denote by J the
Jacobian, computed with respect to these oriented coordinates.

Consider any form «: Q — R. Define the bilinear form B, on Q by the formula
B.(g, h) = a(g-h).

Theorem (the signature formula): The signature of the bilinear form B, is equal
to the index of the singular point 0 of the germ fifalJ)>0.

The proof is obtained by a limit procedure from the proposition given below
concerning functions on a finite set with an involution,

A complex function on a set with involution 7 is said to be t-real if p(ra) = mi
(a polynomial with real coefficients is t-real for the involution of complex
conjugation). All the r-real functions on a set of u points form an R-algebra R
of R-dimension . For each function g€ R we define a bilinear form B, on R
by the formula B,(h, g) = Zep(a)h(a)g(a;). Suppose that ¢ does not vanish at
any of the points a;.

Proposition 1: (1) The values of the form B, are real. (2) The form B, is nondegener-
ate. (3) The signature of the form B, is equal to ¢ * — @, where @* is the humber
of fixed points of the involution on which ¢ > 0, and ¢ Is the number on which
p < 0.

Proof: Under the action of the involution the set decomposes into invariant
subsets, consisting of one or two points. Therefore it is sufficient to prove the
proposition for one point and two point sets, for which it can be verified
immediately.

We prove the signature formula for the special bilinear form B. The root 0
of the system f = 0 breaks up for small real regular values ¢ into the i complex
roots of the system f=e. Let ay, ..., a, be these roots. The involution of
complex conjugation acts on the set of these roots. We fix u real polynomials
€1,..., e, determining an R-basis for the local algebra R{x}/(f)and, consequently,
a C-basis for the algebra C{x}/(f). Denote the spaces of their R-linear and
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C-linear combinations by L and L. Consider the bilinear form B® on the space
Ly, defined by the formula

glahla;)

Blo. W = L 50

Lemma 1: The signature of the form B is equal to the number of real roots of the
system [ = e, counted with the signs of the Jacobians at a;.

Corollary: The signature of the form B* is equal to the index at zero of the map f
(see Proposition 1 of Section 5.3).

Lemma 1 follows from Proposition 1 and the following lemma.

]

Lemma 2: The restrictions of the functions of L_ on the set of complex roots (ay, ...
a,), and only these, are t-real for the invelution t of complex conjugation.

Proof: The t-reality of the restrictions is obvious. Therefore it is enough to
prove that the map of the p-dimensional space Lg to the u-dimensional space
of t-real functions does not have a kernel. But for the restriction map of functions
on L to the set (a;, ..., a,) only zero maps to zero (Section 5.10). Lemma 2 is
therefore proved.

Let & tend to zero. The form B* will then tend to a well-defined form B,
corresponding to the linear form ag(*) = [/f] (Propositions 1 and 2 of Section
5.11). The limit form B is nondegenerate, since its complexification is non-
degenerate (Proposition 3 of Section 5.11). Consequently its signature, like the
signature of the pre-limit form B® is equal to the index of the germ f at zero.
Thus the signature formula has been proved for the special linear form «, (notice
that ao(J) = ¢ =>0). Now let o be an arbitrary linear form on the local
R-algebra, positive on the Jacobian. Join « and oy by a segment in the half-space
of linear forms positive on the Jacobian. To the points of the segment there
correspond nondegenerate bilinear forms (Theorem 2 of Section 5.11). Therefore
their signatures are the same.

Remark: In [23] the signature formula is used to estimate the index of a singular
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point ofa homogeneous vector field in R"in terms of the degrees of the components
of the field. In [100] the signature formula of Proposition 1 is used to estimate
the totalindex of the singular points of a polynomial field ina domain of R”, defined
by a polynomial inequality P > 0, in terms of the degrees of the components of
the field and the polynomial P (the signature formula is applied in just the same
way as in Lemma 2). The estimates are sharp. They generalise the well-known
inequalities of Petrovskii-Oleinik [140] in real algebraic geometry:,

3.13 The inverse Jacobian theorem

Let U = C" be a bounded domain with boundary and let f: U — C" be a holo-
morphic map. Let us assume that the system f = 0 has roots in U and that the
image of the boundary f(@U) does not contain 0. Let V¥ be the connected
component of 0 in C™, f{U). The number of roots of the system f— y = 0 in
U, taking multiplicities into account, is the same for all y in V (this follows from
Proposition 3 of Section 5.4). Let J = det(df/dx) and let h be a holomorphic
function on U.

Theorem (concerning the inverse Jacobian): On V there is a (unique) holomorphic
function @ such that for any regular value y, @(y) = Zhia;)/J(a;), where the summa-
tion is over the set of all the roots a; of the system f—y =0 in U,

A proof of the theorem, based on an n-dimensional version of Abel’s theorem
on the trace, is given in Section 5.18. We use this theorem straight away.

Suppose that the map f has a single zero in the ball B at its centre a and
that the function h is holomorphic in B.

Corollary 1: Let a; be the roots of the system f = e in B. As the reqular value ¢ tends
to zero the function

ole) = Thla:)/J(a)

has a limit.

Definition: The limit in Corollary 1 is called the symbol [h/f ..



106 Basic concepts

Let {f.} be a deformation of the map f and (h.} a deformation of the
function h.

Corollary 2: Let ¢ tend to zero in such a way that all the roots a; of the system
fe =0 in B remain nondegenerate, Then

lim Zh(a;)/det (3f/dx)a:) = [h/f]a.
(3]

The proofis obtained by applying Corollary 1 to the map F:C" x CK— " x C*
and the function H defined by the formulas F(x, £) = (fi(x), ¢) and H(x, ) = hy(x).

We return to the situation of the inverse Jacobian theorem.

Corollary 3: The function @(y) = Z[h/f]a, is analytic on V. Here the summa-
tion is over the set of all roots of the system f—y =0 in U.

Proof: Take a regular value of the map close to y. The preimages of this value
fall into groups lying close to the roots ;. Let the regular value tend to Y.
On proceeding to the limit in each of the groups we get that the holomorphic
function in the thearem is Z[h/f]....

The Euler—Jacobi formula follows from the inverse Jacobian theorem. Let f
be a polynomial map of C" to C* whose components are polynomials of degreees
m;. Let fo: C" — C" be the polynomial map, whose components are the highest
homogeneous terms of the components of /. Suppose that all of the roots a; of
the system f= 0 are simple and suppose that the system f = 0 has a single
root, the point 0.

Corollary 4 (the Euler-Jacobi formula): For any polynomial h of degree less
than the degree of the Jacobian (deg h <my + - + m, — n)

]

Zha;)/J(a:) = 0. «

Proof: Consider C” to be the coordinate plane X,+; =0 in C"*'. Let /; and ki
be homogeneous polynomials in C"* ! such that fi(x, 1) = fi(x), h(x, 1) = h(x) and
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deg f; = deg fi, degh = degh. Consider the map P: (C"T1 0)—(C"7, 0) with
components P; :ﬁ fori=1,...,nand Pysy = Xa+1. Then 06 C"* ! is the only
root of the system P = 0. The roots of the system P = (0, ¢) (where (0, ¢)e C” x C!)
are points of the form b; = (aze, ¢), where a; is a root of the system f=0. At
every root b; we have the equality A(b;)/det(P/d%)(hi) = e"h(a:)/J(a;), where
p =degh — (m; + - + m, — n) (£ denotes the coordinates x1, ..., x,+ in C**1).
Summing over all the roots we get

Zh(b;)/det(3P/dx)(b;) = e"Zh(a;)/J(a;).

According to Corollary | the sum on the left must have finite limit as £ — 0.
For p < 0 this is possible only if h(a;)/J(a;) = 0.

Remark 1: The Euler-Jacobi formula remains true if in place of the polynomials
hand fwith fixed degrees we consider polynomials with fixed quasidegrees, Other
generalisations of the Euler-Jacobi formula are to be found in [85] and [99].

Remark 2: The Euler—Jacobi formula partially explains the existence of the limit
in Corollary 1. Let f be a polynomial map and let h be a polynomial for which
degh < degJ. Suppose that the system f = 0 has exactly one multiple root 0 and
some simple roots. Suppose also that in this system there are no roots “infinitely
far away”. Then as the regular value ¢ tends to zero some of the roots will tend
to 0 and the remainder to the simple roots b;. In this case it follows from the
Euler-Jacobi formula that the limit of Corollary | exists and is equal to
—Zh(b:)/J(b:).

Remark 3: The Euler-Jacobi formula has applications in real algebraic geometry
(see [140], [100]).

5.14 Properties of the symbol [h/f].

Proposition 1: Suppose that the germs g, and f, are A-equivalent, g() = A()f(-).
Then

LA/f)a = [h-det A/g]..
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Proof: Consider the deformation f—¢ of the germ f and the deformation
gs = A(f — &) of the germ g. They have the same zeros a; in a small ball. At
each zero a; we have the equality (dg./dx)(a;) = A(a;)(3f/dx)(a;). Therefore

Th{a;)/det(0f/ dxMa;) = Zhia;)det A(a;)/det(dg./éx)a;).

On letting the regular value & tend to zero we get the required equality.

Proposition 2: [f hel; ., then [hif]. = 0.

(1°) Suppose that in addition the differentials dfi of all the components f; do
not have zeros in a punctured neighbourhood of a. Let h = Zg; fi. We shall show
thatforevery k the symbol [ g fi/f ]a = 0. The hypersurface i = 0 has no singular-
ities in the punctured neighbourhood of a (by hypothesis). For & = 0 the roots
a; of the system f; = ¢; lic on the hypersurface f, = 0. For general ¢ (under the
condition &x = 0) all the roots are simple and each term of the sum Z(gu fila;)/J(a:)
is equal to zero. Proceeding to the limit we obtain the required equality.

(2°) Each germ g of finite multiplicity is A-equivalent to a germ f for
which the additional hypothesis of 1° holds. For the proof it is enough to put
fi=gi+ (xY 4+ - + x)), where §; is the Taylor polynomial of degree N — 1 of
the component g; (see 1° of the Lemma of Section 5.9) and N is sufficiently large
(N > pa[g]) (see Proposition 2 of Section 5.5).

(3°) Suppose that g = Af, f satisfies the hypothesis of 1° and hel,,. Then
[hig Jo = [h-det 4/f]. = 0, since h-detdel,. = I,..

5.15 The nondegeneracy of the bilinear form

The symbol [h/f]. depends only on the image of h in the algebra Q,,
(Proposition 2 of Section 5.14) and consequently determines a linear function
on the algebra Q; .. In this section we consider the bilinear form B on the local
algebra of a germ of finite multiplicity constructed from this linear function.

Proposition 1: On the decomposition of a root of finite multiplicity with a non-
degenerate bilinear form only roots with nondegenerate forms arise.

Proof: Let f'be a germ of finite multiplicity at @ and L the C-linear space spanned
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by the functions ey, ..., e,, whose germs form a basis for the local algebra of
the germ f. Let {£;} be a deformation of f and U a sufficiently small neighbour-
hood of . The natural projection 7: L — A ;(U) of the space L to the multilocal
algebra of the system f, = 0 is an isomorphism for small ¢ (the theorem of
Section 5.10). Consider the bilinear form B* on L, defined by the formula

B(g. h) = =[g h/fTa,

where the summation is taken over all the roots of the system i =0kim 0,
This form is the direct sum of the bilinear forms of the roots a;. The matrix
A® = [Bei, e)} of the form B* depends analytically on & according to Corollary
3 (Section 5.13). By hypothesis the bilinear form of the germ fis nondegenerate,
that is, det 4" # 0. Consequently for small || det A° # 0. For such ¢ the bilinear
forms of all the roots are nondegenerate.

Proposition 2: The bilinear form of the germ of the Pham map is nondegenerate.

The proof is obtained from the following computations. The local algebra
of the Pham map @™ is generated by the monomials x* = xki- - xkn
0=k; <my,...,0 <k, < m, The monomial X", where r = m, — Ly it— 1,18
proportional to the Jacobian of the Pham map. For this monomial [x/o"] = 1.
For all other x* of the local algebra [x*/®™] = 0. This follows from the Euler—
Jacobi formula. The bilinear form of the germ of the Pham map Is non-
degenerate: dual to the basis x* for Qg is the basis X"~

Proposition 3: The bilinear form of any germ of finite multiplicity is nondegenerate.

Proof: A-equivalent germs have their bilinear forms either both degenerate or
both nondegenerate (this follows from Proposition 1 of Section 5.14). Every
germ of finite multiplicity up to 4-equivalence can be obtained from the germ
of a Pham map by a small deformation (Section 5.6). The bilinear form
of a Pham map-germ is nondegenerate. Proposition 3 now follows from
Proposition 1.

5.16 The trace theorem

Consider a map f of complex manifolds of the same dimension, for which every
point has a finite number of preimages. Let w be a k-form on the source manifold.
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Definition: The trace of the k-form w by the map fis the k-form on the target
manifold, whose value on each k-vector is equal to the sum of the values of the
form w on all the preimages of this k-vector. This form is defined for regular
values of f. It is denoted by Trw.

Theorem (Abel): Let f(x) = x” and & = gdx, where g is a function holomorphic at
0. Then the form Trw, defined in a punctured neighbourhood of 0, continues
holomorphically over Q.

Proof: Trw» = @dy, where o(y) = Zg(y''")(1/p)y'"'# 1. Represent ¢ as a power
series in y'/?. The coefficients of the non-integral powers of y are equal to 0,
since @ is single-valued. There are then no negative powers of y in the decom-
position, since each term has degree not less than (1/p) — L.

Corollary 1: Let f be a one-dimensional ramified p-fold covering. Then the trace of
a holomorphic form on the source space continues holomorphically to a form on the
target space.

To formulate the trace theorem in the n-dimensional case we make the
following

Definition: A map f of complex manifolds of the same dimension is said to be
of finite type if the sum of the multiplicities of all the preimages of each point
has a constant finite value. This value x is said to be the number of leaves of
the projection f: M — N, a covering of finite type of M over N.

Proposition: A map of finite type is proper.

Proof: The point y has u preimages (counting multiplicities). Every point
sufficiently close to y has u preimages (counting multiplicities) close to the
preimages of y. Consequently there are no other preimages and this means that
the map is proper.
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Corollary 2: The set of reqular values of a map of finite type is open and every-
where dense.

Theorem: The trace of a holomorphic form for a map of finite type extends holo-
morphically over the whole target manifold.

The proof may be obtained from Abel’s theorem in the following way.
(1°) For the map f(xi, ..., xa) = (x§, X2, ..., x,) the theorem is proved just as
for Abel's theorem.
(2°) A point of the source manifold is said to be good if there are systems of
coordinates in neighbourhoods of the point and its image in which the map is
described by the formula of (1°).

A point of the target manifold is said to be good if all its preimages are good.

In a neighbourhood of a good point in the target the theorem follows
from (17).
(3°) The set of bad points in the source has codimension greater than 1. For
the proof let us consider the following three sets in the source:
(1) the set of singularities of the set of critical points of the map;
(2) the set of critical points of the restriction of f to the nonsingular part of the
set of critical points;
(3) the set of critical points of f at which the multiplicity is greater than at
neighbouring critical points.

It is not difficult to prove that the codimension of each of these sets is greater
than 1 for maps of finite type, and all the remaining points are good.
(4°) The set of bad points in the source is analytic, hence the set of bad points
in the target is analytic (Remmert’s theorem) of codimension greater than 1.
(5”) By Hartog’s theorem the trace extends holomorphically to the set of bad
points.

Another proof of the trace theorem is given below, without reference to the
theorems of Remmert and Hartogs.

517 The integral representation of the trace

Let f: M — V' be a map of finite type onto a domain V of C" and let w be a hqlo-
morphic n-form on M. Choose in C" coordinates yy, ..., y». Define the function
[Trw] at regular values of the map as the coefficient in the representation

Trw = [Troldy, A...A dy.
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Consider the map [ f|*: M = R", xr—(|f1(x)|% ..., |fi(2)]?)
Let 6 be a positive vector in R". Define the polydisk V; by the conditions
| ve|? < 8y, and its shell T by the conditions |y, |* = &,.

Theorem: Let & be a noncritical value of the map | f|* such that the polydisk Vs
together with its shell lies in V. Then in the polydisk the function [Trw] admits
the integral representation

[¢3}
JSfi—p)

1
(%) [Tra](y) J‘

T 2y
where the cycle Ty is defined by the condition | f]* = 4.

We define a meromorphic n-form on M, depending on the point y of V, by
the formula w, = w/[2ri)"TI(f; — yi)].

We define the map | f — y|*: M — R", depending on the parameter ye V, by the
formula x+(|fi(x) — y1|% ... |fa(x) — ya|?). The preimage of a regular value
pe(R7)" is a compact manifold for sufficiently small y and p. Denote it by Ty ,.

Lemma 1: In a neighbourhood of a regular value y of f
[Tra] = Ir. Wy

(for every sufficiently small vector p with positive components).

Proof: The preimage of a small neighbourhood W of a regular value consists
of u non-intersecting neighbourhoods U ;. We shall identify U; with W by means
of fand shall use in U; the system of coordinates fi, ..., fu. In U; let
w = g;dfi ~... Adfy. Then [Trow] = Zg;. On the other hand, for small p the cycle
'y, decomposes into g tori T}, lying in the neighbourhoods U; (and defined in
them by the n equations |fi— y:|* = p)). According to the Cauchy integral
formula ‘

giy) = 1 j gilfi, .. fo)dfy A LoAdfs
g7 (2 -)n T, l_[()flfyl) ]
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In our notations this equality takes the form gj(y):jT w,. Consequently
I, @y =Zy,(y). The Lemma is proved. ’

Lemma 2: For every reqular value of f sufficiently close to zero the cycle T, , for
small p (|p| < poly)) is hemologous to the cycle T's in the complement of the set of
singularities of the form w;.

The proof is based on the fact that the preimages of a regular value for two
homotopic smooth proper maps are homologous.
(1°) The cycle I's is defined by means of a nondegenerate system of equations.
A small change in these equations only changes the cycle slightly. For any y
from a sufficiently small neighbourhood of zero W, the cvcles I'(t) = ', 5 form
a smooth homotopy of ['s to [’y as ¢ varies from 0 to 1. Analogously, for
ye Wy and for any sufficiently small pe R" (|p| < po(y)) the cycles I'(z) = Ty s+1p
form a smooth homotopy of I'y 5 to I'y s+ ,.
{2°) Consider the map M x R — R", depending on the parameter ye V, sending
the point (x, t) to the point with coardinates | fi{(x) — y;|* — tJ;. Let p be a regular
value of this map so small that |p| < po(y) and that the cycle I'y, decomposes
into p tori T; (see Lemma 1). The preimage of p defines a smooth (n+ 1)-
dimensional submanifold in M x R. The projection to M of the part of this
manifold distinguished by the inequalities 0 <¢ =< 1 is a film, stretched between
the cycles I'y s and I', , = ZT;. The Lemma is proved, since neither the film nor
the homotopies produced touch the singularities of the form w,.

Proof of the theorem: (1°) The representation () holds for small y. In fact, by
Lemmas | and 2 for small y

J‘rn_(u.‘. — jr wy = [Trw](y).

Yo

(2%) From (1°) there follows the trace theorem for n-forms.

(3°) From the trace theorem there follows the holomorphicity of the continuazion
of [Trw] over the whole of ¥; The right hand side of () is holomorphic in the
polycylinder V5. According to (1°) the left and right hand sides coincide in a -
neighbourhood of zero; accordingly they coincide on Vs.
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Corollary: There is an integral representation for the trace of a k-form on

n-dimensional space.

Consider, for example, the trace of a 1-form on C% Trw = a,dy; + azdy;.
Multiplying by dy, we get

aydyy A dyy = (Trw) A dy; = Tr(w A f*dy,)

and we get an integral representation for the coefficient a; as [Tr(m A f*dy;)].
Analogously one finds integral representations for the coefficients of the
coordinate form of the trace of a k-form in C"

Remark: There is yet another proof of the trace theorem in [84]. There one
can also read about applications and generalisations of this theorem.

5.18 Proof of the inverse Jacobian theorem

Consider the domain f ~'(V) = M and its map f| M: M — V. It is of finite type.
Consider the n-form @ = hdx; A ... A dx,. On an open dense set in V of regular
values of f, [Trw] = Zh(a:)/J(a;), and by the trace theorem the function [Trw)
is holomorphic in V. The theorem is proved.

Corollary:

1 hd. Xn
[hif] = J‘ X A A dx .
fil=8

(2mi)" ], Tl

Proof: [h/f] = lim[Trw(y)] = [Trw](0), and therefore the corollary follows
y—0

from the integral representation of the trace.



