
5. Thc local multiplicity of a
holomorphic map

It is proved in this Chapter that the algebraic rnultiplicity of a holomorphic
map coincides with its geometric multiplicity, that is with the index of the
singular point ol the corresponding holomorphic 1ield. Although this result was
known classically it seems that a detailed proof was published only in the paper
[139] ol V. P. palamodov. The idea of the elementary proof presented below
is due to A. G. Kushnirenko [106].

The index ol a singular point of a real vector field can be computed as the
signature ofan appropriate quadratic forrn on the local algebra olthe singularity
{the formula of Levine-Eisenbud Khimshiashvili t621, t97l). We prove this
formula, based on nondegenerate quadratic forms on local algebras (Grothen-
dieck duality) with the help ol an n-dimensional generalisation of the theorem
of Abel on the trace of a holomorphic form.

5.1 Multiplicity

Let /: (C", c) - (C', 0) be a holomorphic map-germ at a point a. Consider the
algebra C{x}, of all holomorphic lunction-germs at d. The germs of the com_
ponents ol f generate an ideal 1y., in this algebra.

Definition: the nultiplicity of the germ / at the point a is the dimension of its
local algebra

p.lfl: dimoQr., ; U." : C.{x},lr r..

A gerrn is said to be of fnite multiplicity il its multiplicity is finite.

Example 1: Illis a nondegenerale linear operator then its multiplicity at 0 is
equal to 1.

Example 2: Let f1 : x1x), f2 = ,ti + xl. We associate to the monomial xf ,x!,
the point (kr, kr) of the integral lattice (Fig. 37a). We then note the monomials
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(b)

Fig..'17.

belonging to the ideal I : (fr, fz). All the monomials in the hatched region of
the figure belong to it together with x1xl. The binomiall, is formed by the
segment with end-points (2,0) and (0, 3). By moving this segment one place to
the right we may convince ourselves that ,xf e I and by moving it up two places
that.\:€1. Therelore all the monomials in the region hatched in Fig.37b lie
in 1. In Fig.37c seven monomials are indicated determining a C-basis for the
algebra Q1.0. Thus pe[/] :7.

Exampfe 3: Letfi : tl- xrxz,fz: xr-,c: - ri. Again we representl and/2 by
segments (Fig. 38a). The vertices ol the zigzag path in Fig. 38a correspond to
monomials which are congruent modulo the ideal I = (fr,lz). Therelore ,x1rj
is congruent to monomials of arbitrarily high degree modulo 1. It is not difficult
to v€rify that -y1r: € I (for example, this is clear from the fact that rlxj = xrxj._xr
mod 1).

Therelore all the monomials in the region hatched in Fig. 38b lie in the ideal.
A basis for Q1.o is generated by the five monomials enclosed in Fig. 38c, p[.f] : 5.
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5.2 The index is equal to the multiplicity

Definition: The index ind,[/] of a map-germ/ at a point c is rhe degree of themapf/ lfl):S!^-'- Si,- r ofa sufficientty smail spheie ll x _ rz | : €l; the source
space to the unit sphere in the image space.

If there is a neighbourhootl of a in which there is no inverse image ol0 apartlrom possibly the point a itself then the index is well_defined 1Jo., not a"p"nO
on the choice ol the small sphere S"2, ,). The index of a germ at u non_irotut"O
zero is not defined. The multiplicity and index of a root"a ol a system oi trolo-morphic equations ft : ... : I,: 0, defined in a neighbourhood of o u.".yurt
the multiplicity and index of the map_germ / _ (Ir, . . . , f^) ut o.

Theorem l: The index of a holomorphic germ of f.nite mubiplicity is etqual to itsmultiplicity.

Theorem 2: .4 holomorphic map-germfails to be offnite multiplicity at a point q, if
and only if a is a non-isolated inuerse image of zero of the germ.

. 
The proof of Theorem 2 is given in Section 5.9. The proof of Theorem I isgiven below. It is based on propositions l" 7", formulaied below and proved

in Sections 5.3 5.8.

(11 The universality of the pham map.

Definition: The map rD.:C, --+ C', defined by the formulas

yr : rf', ..., Y": x:",

is called the pham map.

Definition: Two germs/and g at a point c are said t o be algebraically equivalent
or, briefly, A-equiDalent, if there is a germ oI a holomor:phic family of linear
nondegenerate maps t(x)eGL(n, C) such that/(x) : A(xigg).
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Proposition: Ler f:(C.',0)-C" be a map-germ of Jinite multiplicity. Then there

existsaPhammap6'suchthotfot0is A-equiualent to the map-germ@! : @^ + EJ

for arbitrary t*0.

In other words, by a small deformation of a Pham map one can obtain any
germ of finite multiplicity (up to ,4-equivalence).

(3 ")

(2") Proposition: The irulex and multiplicity at O of the Pham map coincide.

Proposition: The indices of A-equiualent germs are etlual.

Proposition: The multiplicities of A-equioalent germs are equal.

(5") Additivity of the index: Let a system of n holomorphic equations in C"
depend holomorphically on a parameter.

Under changes of parameter a multiple root of the system may decompose.

Proposition: The sum o;f the indices of the roots,formed by the decomposition of a
multiple root of the system, is equal to the index of that root.

(6') Subadditivity of the multiplicity.

Proposition: The sum o;f the muhiplicities of the roots,Jormed by the decomposition

oJ a muhiple root of the system, does not exceed the multiplicity of that root.

(7\ Proposition: The muhiplicity of a root is not less thon its index.

Proof of Theorem l: Letl(C',0)--'(A',0) be a map-germ offinite multiplicity.
Choose a Pham map o such that the germs / and O. : O + €/ at zero are

,{-equivalent for e#0 (by l'). Choose a sufficiently small neighbourbood U

(4')
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ol 0. Choose a sufficiently small s(U) > 0. Consider the delormed Pham map

@. : Y. Let ci be the roots of the system Y : 0, lying in the neighbourhood U.

We obtain a chain of relations:

polol > !ir,,[Y] (bY 6'),

(l) rr,,[Y] > ind,,[Y] (by 7"),

rind,,[w] : indo[@] (by s"),

ind6[tD] : pe[<D] (by 2").

From this chain it lollows that all the inequalities in it are equalities. Since

/(0):0, among the roots ci is the point 0. Consequently

ro[Y] = indo[Y]

(since the inequality (1) has become an equality). But, since the germs/and Y
are l-equivalent, we have

,0111 : po[Yl (by 3"),

ind6[/] = ind,[Y] (bY 4').

Thus Theorem I has been proved in the case that/(0):0. On the other hand

if/(0) + 0 then, as is easily proved,

ro[,f]:indo[/]:0.

5.3 The index of a real germ

The index is defined not only for holomorphic germs but also for smooth maps

of real spaces.

Let/:(F{', c)-R'be a smooth germ at a point c.

Definition: The index ind"[/] is the degree of the map// ll/ l:Sl- 1 - Si l ofa
sufficiently small sphere lx - a 11 

: e in the source sPace to the unit sphere in

the target space.

The index is not defined if a is a non-isolated zero ofl
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Example: If/(0) : 0 and the Jacobian matrix of/ at 0 is nondegenerate then
the index of 0 is equal to plus or minus unity, depending on tlie sign of the
Jacobian.

Suppose that in a closed ball B c Rn there are no zeros ofthe mapl (R,, 0) __+ R,
except possibly rhe point 0 and let I be an arbitrary smooth deiormation ofl

Proposition l: For suJfciently small e the sum of the indices of the zeros ol the
disturbed mqp J, in B is equal to the irulex of 0 of the original map f, prouid.ed. that
the number of these zeros is fnite.

In fact: (1") All the maps q, : 
"f"l l f, ll : dB -+ Sl- 1, for sulficiently small €, are

mutually homotopic. (2") The degree of the map g" is equul to the sum of the
indices of the zeros of the map I in the ball _8.

Coroffary: The inder of the point 0 of the mapf is equal to the number of preimages
in B of an arbitrary sfficientry smalr regurar uarue ee!l', counted vtith the sign
oJ the Jucobian dt these points.

For the proof it is s ufficient to apply to the deformation, : jf_ € the assertion
olProposition I and to use the computation ofthe index ofa nondegenerate zero.

Definition: Two germs f 9:(R', 0) J R, are said to 6e real A-equiualent if therc
is a germ of a smooth lamily oflinear maps,4(x):tr,, R" such that det l(0) > 0
and e(x) : l(x)fl-r).

Proposition 2: The indices of real A-equiualent germs are equol.

Proot Since det ,.{(0) > 0, it is possible to join A with Eby a homotopy,4, with
det ,4,()r) > 0. The homotopy g, : A,:l joins S to / and has no zeros on the small
sphere.
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5.4 The index of a holomorphic germ

Proposition l: The determinant of the real form A:R2'--'.]R2' of a non-

degenerote complex linear map A:C.'-C.^ is positiue.

Proof: det .4 : ldet ,4 l? (the formula is obtained by a direct computation with
respect to a basis in which the matrix,4 has triangular form).

[A second proof: (1") The set of nondegenerate linear operators A:C,r --+ Qr

is connected. For the proof it is sufficient to join two nondegen€rate matdces

by a complex line; it intersects the set of degenerate matrices in not more than n
points. (2") Join a nondegenerate complex operator to I by a path consisting

ol nondegenerate complex operators. The real forms of these operators are non-
degenerate (since nondegeneracy means invertibility). Consequently the deter-

minants of all these real forms are positive.]

Corollary: A-equioalent holomorphic germs haoe the same index.

Proof: The real forms of holomorphic ,4-equivalent germs are real ,4-equivalent.
In fact rf g: ,4/then the real form ! : Al and det,a(0)> 0.

Let B be a closed ball with centre at the point,r€C'. Suppose that the
holomorphic map/ is nowhere zero on B\a.

Proposition 2: The index at a of the germ off is equal to the number of preimages

in B of an arbitrary suffciently small regular ualue e.

Proof: The index is equal to the number of preimages of e, counted with signs

of the Jacobian of/(see Section 5.2). According to the Lemma this sign is always
positive.

Remark: Consider a holomorphic map of a 2n-dimensional compact domain in
C', not having a zero on the boundary of the region. Then the degree ofthe map

fllfll .f the boundary ro Sl' 1 is non-negatiue because this degree is equal
to the number of preimages of e.
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Proposition 3: Suppose that a map has no zeros on the bountlary of a bound"ed

tlomuin U - C.' and that the degree of the map gl gl of the boundary of LI to the
unit sphere is equal to k. Then the s),stem g : 0 has a fnite number of roots in t)
and the swn of their indices is equal to k.

Proposition 3 follows from the following Lemma.

Lemma: Under the conditions of Proposition 3 the number of geometically distinct
solutions of the system g :0 in U tloes not exceed k.

Proof: Suppose that the system has /< + I roots ar, . . ., e*+ r.
(l') There exists a polynornial map P:C'* C", for which the points a1,..., a/,+ I
are nondegenerate roots.
(2') The map g, : g + tP has nongenerate roots at the points dl, . .. , a*+ 1 for
almost all values of €.

(3') For small le the index olthe map g./ lg. ofthe boundary of U is equal to k.
(4') Choose a small s, for which the roots ai of the map g are nondegenerate.
Surround a1 by small balls 8i, not containing any other zeroes of the map g,,
The degree ofthe map S"lllS"ll ot the sphere aBr to S?.-1 is equal to l and
consequently the degree of the map uaBi to Si"- 1 is equal to k + l.

Consider the dornain U' : U\uBr. The degree of the map of the boundary
of this region is nonnegative (see the Remark above); on the other hand this
degree is equal to k - (k + l) : - 1. Contradiction.

Corollary l: The index of a root is strictly positiue.

For the proof one has to apply the Lemma to a ball containing a single root
ol the system.

Corollary 2: On the decomposition of an isolated root a frnite number of roots are
formed arul the sum of thei iwlices is equal to the index of the decomposed root,

Corolf ary 3: U ncler the corulitions of Prcposition 3 the index of each root does not
txceel k.
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5.5 Multiplicityandl-equivalence

Proposition l: The multiplicities of A-equiDalent germs are equal.

In fact the ideals 17 and 1, of ,4-equivalent germs / and g coincide.

Proposition 2: Suppose that a germ f has mukiplicity p ond that the germ g dillers
from the germ f by small terms of order U + l. Then the germs g and. f are A-
equiualent.

Corollary: Suppose that the Jacobian motrix of the germ f at 0 is non-d.egenerate.
Then its muhiplicity is equal to 1.

In fact this is clear lor a linear map and a nonlinear map dillers from a linear
one by small terms of the second order.

Proposition 3: A root of fnite multiplicity of a system of holomorphic equations is
isolated.

For the proofs of Propositions 2 and 3 we require the

Lemma: let the germ f haue mukiplicity p. Then the product of any p function-
germs, each taking the ualue 0 at 0, is contoined in the ideal I J.

Proof of the Lemma: For the product tpt. ,, ,.ep w€ construct p + 1 germs l,
et, ere2, ..., er'... er These germs are linearly dependent in the ring 0r,
that is there exist nontrivial linear combinations

co + crEl l ... * curpl'...'Eue 11.

Let c. be the first coelficient dilTerent from zero; then

<P t ... tp,(c, ! c,+ rtP,+ r I ... * cptp, + r'... Eu)e I t.

The multiplier within the brackets is invertible in the ring C{r}, since c. 10.
Consequently <p1 ....tp,and therefore also et.....e' belongs to the ideal Iy.
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Proof of Proposition.2: Every function-germ g of order p + I can be put in the
form g: E/r;1, where llr(0):0 (using the Lemma). Having expressed all the
components ol E: g f it this way we get E: Hf where H(0) :0. Con-
sequently, g : (E + H)l which proves the l-equivalence of the germs/and g.

Proof of Proposition 3: Suppose that the germ / has. multiplicity p at 0. The
germ xf we put in the form x1 : lh;ifr 'fbe region in which the germs lj.i and
j may be holomorphically continued contains no roots of th€ system /:0
other than the point 0.

5.6 Properties of the Pham map

Let .f he a. map-germ of multiplicity ! at 0. Consider the Pham map <D',

ry: p-l 1,..., p + I and its deformation A?:A^+Ef.

Proposition l: The germ f is A-equiaolent at 0 to the germ @! for all t, *0.

Proof: The germ y'is z{-equivalent to f at zero while Oi differs from y'by small
terms of order il + 1.

Proposition 2: The index and the muhiplicity at zero of the Pham map are equal
to each other.

Proof: (l') The index is equal to the number of solutions of the system of
equations xT' : 81, ..., xf": e, for general €r, ..., E, (by Proposition 2 of
Section 5.4). Consequently indo[<D'] : m\.....mn.
(2") The local algebra Qo-,0 is generated by the monomials x!'.....x1", where
0Skr<mr, ...,0!k"<m* The dimension 46[0'] of this algebra, con-
sequently, is equal to rtr.. ...tnn.

5.7 The subaddivity of multiplicity

Let {J} be an arbitrary deformation of a map-germ/of multiplicity p at zeto.
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Proposition I (on the subadditiuity of the mukiplicity\: There is a neighbourhood
of zero U in the source space such that Jbr any suffciently small el the number of
roots of the system fe = 0 in U, countetl $)ith thei multiplicities, does not exceed
p.

Remark: The multiplicity is subadditive even in the real case, where, unlike the
complex case, it is not additive.

Corollary: The index of a germ of fnite multiplicity is not greatq than its multi-
plicity.

For the prool of the corollary it is sufficient to apply the assertion concerning
the subadditiyity ol the multiplicity to the particular deformation /, : /- e.

Let U c C" be an open set, l(U)the algebra ofholomorphic functions, defined
onthesetUandl"(U)theidealofthisalgebra,generatedbylunctionsg\,...,g^.
The quotient algebra Qn(U\: A(U)Ilsu) is said to 6e the algebra of the map
g on the domain U ,

fhe polynomial subalgebra QnlUl of the map g on the (lomain U is defined
to be the image of the algebra of polynomials in the algebra Qs(U) under the
factoring homomorphism.

The subadditivity of the algebraic multiplicity follows from the following
two propositions.

Proposition 2: For eaery deformation {f"} of a map-germfofmuhiplicity p at0 there
is a neighbourhood U of zero in the source space such that for any suff.ciently small
el the C-rlimension of the polynomial subalgebra of f, on () does not exceed p.

Proposition 3: The number of solutions in Ll of the system ofholomorphic equations
g : 0, taking multiplicities into accoun\ does not exceed the C,-dimension of the
polynomial subalgebra of g on U.

Proposition 3 is proved in Section 5.8. For the proof of proposition 3 we
require an addendum to the Weierstrass Preparation Theorem. Let/be a map-
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germ of finite multiplicity and let e1, . . ., e/, be functions providing a basis for
its local algebra. According to the Preparation Theorem there is for an arbitrary
holomorphic map-germ a Weierstrass decomposition:

rp(x) : Xe;(,r)E;(y), y:/(-x).

Lemma l; There exist single neighbourhoods of zero U 1 and U 2 in the target and
source spaces on which the functions fguring in the Weierstrass decompositions of
all tlrc polynomials are simuhaneously defned.

Proof: For the domain U I we take the domain on which one can holomorphically
continue th€ functions Ei, participating in the decompositions of the following
flnite set of functions:

l, x;er(l 5j5 n, l<k<p).

For the domain U2 we take the subdomain of the domain/-1(Ur), on which
the functions er can be holomorphically continued. We proceed by induction
on polynomial degree. Every polynomial P of degree p can be put in the form

P : 2xiQ: ]- c.l, degQj < p.

We put in this representation the Weierstrass decompositions lor the p; and
use the Weierstrass decompositions of the functions rjer and l. We get the
decomposition ol Lemma 1.

Consider the deformation {f,}, teCk, of the holomorphic map-germ
/:(4", 0)-O'. Define the map-germ F;(C" x Cr, 0)-C'>< Cr by the formula
F(.x, e) : (f,(x), e).

Lemma 2; The local algebras of the germs f and. F are isomorphic. IJ the lunctions
e\, ..., epfarm a basis for the algebra of the germf then they also form a basis for
the algebra of the germ F.

Proof: The ideal generated by the components F r, .. ., Fn, €1, . . . , €r of the map
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F in the algebra ol holomorphic map-germs at 0eC' x C& coincides with the

ideal generated by the functionsr,...,f,, er, ..., e*.

Let e r, . . . , e/ be functions whose germs at O-form a basis for the local algebra

ol the germ / and let {l} be a deformation of the germ I

Lemma 3: There is a neighbourhood of zero U c C' such that for all sfficiently
small lcl the linear enaelope of the images of the functions e\ . . . , e], in the algebra

Qr,lU) contains the polynomial subolgebra Q1,lUl.

Proof: The functions e1, . . ., e, form a basis for the local algebra of the map F
(Lemma 2).

Apply Lemma 1 to the map F. According to this Lemma there is a neighbour-
hood of zero U x V <- C' x Cr and a ball B in the target space Cn+e such that:

(1) F(U x Iz) c B,

(2) in the domain U x V each polynomial P is representable in the form

(*) P(x) : Io(y, e)e(-r), y : l(x).

By Hadamard's Lemma the functions <Di in B are representable in the form

O;(y, e) : ci(e) +IyrOi.r(i,, e).

Substitute these decompositions in (*). We get lor each polynomial P in U x tr/

a representation

Pt\t : tc,{rle,{x) +lhix, tly,. yj - t,.jtxl.

where y'r; is holomorphic ot U x V.

The second sum belongs to the ideal 11,(U).'fhe Lemma is proved.

Remark: The linear combination of the functions ei that we have constructed

equivalent to the polynomial P modulo the ideal depends holomorphically on the

parameter €.

Proposition 2 follows from Lemma 3.
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5.8 The estimate of th€ number of solutions of a system of equations.

In this section Proposition 3 of Section 5.7. is proved.

Lemma l: Suppose that the C-dimension of the polynomial subalgebra of the map
g in U is fnite. Then euery zero of the map g is of fnite muhiplicity.

Prooft Suppose that a is a zero of the map g. Let (pt be linear functions taking
the value 0 at a. If the dimension of the polynomial algebra is equal to A then
the images in it olthe I + 1 polynomials l, Et, <p,.. rp2, . .., rpr.....rpu are linearly
dependent. Arguing as in the Lemma of Section 5.5 we find that there exists a
lunction pe.4(U) such that p(al+0 and pAL.....At,els(U).Inverting p in the
algebra of holomorphic function-germs (but not polynomials) at 4 we get that
r.pt.....epeIs,o, The lemma is proved.

Lemma 2: The number o.f dilferent roots of the system S : 0 in U (without taking
muLtiplicities into account) does not exceed the C,-dimension p of the polynomial
subalgebra of the map g in U .

Proof: Let us suppose that there exist .il+ I roots cr,..., ara1. There exist
polynomials Pi, equal to 1 at a1 and equal to zero at the remaining p roots.
The images of the p + I polynomials P; in the polynomial subalgebra are linearly
independent. This contradicts the condition.

Some notations. Let q\ . . . , a, be all the zeros of the map g in the domain U.

Definition: The muhilocal algebra of the system I : 0 in U is the direct sum of
the local algebras of the germs of 4 at the points ai.

Notation: Ar(U ) : Qn",

We associate to every function of ,4(U) the set of its germs at the points a,.
This association induces a homomorphism of the C-algebra A(Ul to AaV),
which we shall denote by z.

I
i= I
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Lemma 3: Suppose that the C-dinension of the polynomial subalgebra oJ. the mapg in U is Jinite. Then the imoge of the atgebri oi potyno.iot, ir-aLt tn, ho.o_morphism r coincides v,ith the mu.ltilocal algebra" Ao(i\.

Proof: Let dt, . . ., au be the roots of the map g in the domain U (there are afinite number of them according to Lemma 2).
Each root a, has finite multiplicity p; (by Lemma 1). Functions whose jets oforder lli at a, coincide determine

rhere exists a porynomiar -,,";;r[liT:.::'fi::llil,jii.llt,i,iiiil fu ;set of points at, ..., a,.
Proposition 3 foilows from Lem

by the homomorphism z. 
ma 3' since the ideal 1'(u) is mapped to zero

5.9 Isolatedness and finite multiplicity

We prove Theorem 2 ol Section 5.2. It has been proved that a root oI finitemultiplicity of a system of holomorphic equations is isolated G; ;ection 5.5).It remains to prove the

Proposition: An isolqted root is of fnite muhiplicity.

Proof: Let 0 be an isolated root olthe system jf :0. According to the localvariant oI the Hilbert zero theorem there is a number N suchihat xf eI7,o.The proposition is proved.
We give now a direct proof, not using the zero theorem.
Suppose that B is a ball in the domain of convergence ol the Taylor seriesof the gerrn of/at 0 and that the system/: 0 has a single root 0 in B.

Irem,ma; For each A there is a polynomiul map g such thot.
ltt lhe tets LilJ and ll oJ otder A at 0 ure equal,

Q) 
the Oerm of g at O is of fnite muhiplicity,

(3) ll,fll > llf - s I on the sphere lB.
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Proof: Put g in the form I : ft- t -t exr, wheref I is the Taylor polynomial ol
/of degree /- I >ft and,tr is the Pham map @., m : t,...,t.
(1") The germ ofg is of finite multiplicity ar zero. Indeed, in the polynomial
subalgebra of g in C' the relations ext : -.f, r hold true. Using these one can
lower the degree of each polynomial, if its degree in one of the variables is
greater than or equal to l. Consequently the dimension of the polynomial
subalgebra is finite and every zero of g is oi finite multiplicity (see Section 5.g.).
(2') Choose land then 6 such that I fl > lf - gl on the sphere dB. The Lemma
is proved.

Proof of the Proposition: Choose a map g for & : indo[-f].
(1") The degree ofthemap glllg of the sphere dB to the unit sphere is egual to k
(condition 3).

(2") indrfg] 
-< 

/< (Corollary 3 of Section 5.4).

\3") polsl : indo [g] ! ft (Theorem 1 of Section 5.2).
(4') The germs of f and g are ,4-equivalent at zero, since they dilter by small
terms of order k + t or higher (Proposition 2 of Sections 5.5). Consequently
the germ of/ at 0 is ol finite multiplicity.

5.10 The multilocal algebra of a decomposing root

In Sections 5.3 to 5.8 were verified all the propositions used in Section 5.2 in
the proofofTheorem 1. These propositions also contain additional information.

Suppose that -L is a C-linear space, spanned by functions el, ..., e/, whose
germs at zero form a basis for the local algebra of the map f

Theorem: F or each deformation { f"} of the germ of f there is a neighbourhood of
zeto U .= Cn and d neighbourhood of zero V in the parameter space such that for
any ee V
(.1\ the map r:L--+ \"(U\ is an isomorphism of linear spaces;
(.2) each polynomial P in the algebra A(LI) is equiualent modulo the ideat I /U)
t., a unique element of the space L and this element rlepends analytically on e.

Proof: ( t) follows lrom the fact that the map 7r:l, + n /"(U) of spaces of the same
dimension is surjective (since the polynomial subalgebra maps ..onto,', 

every



100 Basic conLepts

polynomial is congruent to an element of l). Th€ uniqueness in (2) follows from
(1) and the holomorphicity lrom the Remark of Section 5.7.

Problem: The isomorphism T:L ,, \,(U) gives the linear space L the structure
of an algebra, depending on the parameter €. Show that this structure depends
holomorphically on € (that is that the product of two elements of t depends
holomorphically on e).

5.ll Bilinear forms on the local algebra

Suppose that I (C', 0) -) (4", 0) is a map-germ of multiplicity ! < co and rhat
0/ is its local algebra. We define on e1 a lamily of symmetric bilinear lorrns
and prove their nondegeneracy.

Consider the Jacobian J : detldflAx), computed in some system of co-
ordinates. We shall also denote by J the class ol the Jacobian in e7 and call
it the Jacobian.

Theorem l: The Jacobian does not belong to the ideal IJ.

Consider any linear form q:QJ - C. We define a bilinear form B, on ey by
the formula

B"(s, h): a(s.h).

Theorem 2; The bilinear form B. is nondegenerate if and only if a(Jj + O.

'fhe annihilator (ann l) ot an ideal I is the set of all g such that gi : 0 for all
i in 1. The annihilator of an ideal is an ideal.

Corollary l: If a(J) * 0 then the annihilotor of an ideal in ey coincides wi.th its
orthogonal complement with respect to the fotm 8".

Proof: (1") If ci : 0 then B"(a, i) : O.

(2") It B"(a, i):0 for all i in I but aio #0, then by the nondegener acy ol B"
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there is an element c for which B"(aio, c)*0.
since ioc € 1.

Corollary 2: ann(ann I\ = I.

l0l

But B,(cio, c, : B"(0, ioc):0,

Proof: (11)1 : .f.

'Ihe proof of Theorems I and 2 is based on the construction ol a special
form B : B,o.

Consider the algebra Q of functions on the I points a1. Take the linear form /

on Q, I(h) : ta(ai)h(at), constructed with resp€ct to the "weight function" .p.

Define the bilinear form B(h, g) on 0 by the lormula B(h, g) = l(h.g). This form
is nondegenerate if the weight function does not reduce to zero at any ol the
points a;.

The local algebra Qr is the algebra of functions on p coincident points. It
can be shown that it is possible to choose E in such a way that for coincidence
of the points the lorm B on Q has a well-defined limit and is moreover a non-
degenerate form on 0/. For this g must tend to infinity on coincidence of the
points (for otherwise the limit form would be degenerate). It can be shown that
it is sufficient to take q : l/J, where J is the Jacobian ofl

The root 0 of the system/:0 decomposes into the p roots of the system

/: e for small regular values e. Let ab..., c, be these roots. For any holo-
morphic lunction I at 0 we set

t"(h\ : Lh(q)lJ (at).

Proposition l: As the regular ualue t tends to zero l'(h\ tend.s to a fnite Dalue.

We shall denote this limit by the symbol ft//1.

Example l: For the function h : gJ the equality Url/l : pg(0) holds.

Proposition 2: The linear form dol) : l. lfl is equal to zero on the ideal I r and
consequently d.etermines a linear form on the local algebro Qt.
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Proposition 3: The bilinear form B : B,oon the local Qlgebra, constuctedfrom the

linear form xo$ : t 1/] is nondegenerate.

The prool of Propositions l-3 is given in Sections 5.14-5.18. We derive

Iheorems I rnd 2 from them.

Proof of Theorem l: lJ ifl : p # 0. Consequently, ./ + 1/ (Proposition 2).

Proof of Theorem 2: Any linear lorm a on Q7 has the form a( ) : B(', a*) (since

the form B is nondegenerate). Therelore BJh, g): B(r, ga*). The form B(h, ga*)

is nondegenerate if and only if the element a* is invertible, but d(J) : B(J,a*):
la*(0) (Example 1). Therefore z* is invertible if and only if s(J) I 0.

Corollary 3: The ideal generated by the J acobion in Q1 is one-climensional antl does

not de pend on the sy stem of coordinutes used in the defnition of the J acobian. This
ideal is contained in any nonzero ideal of the algebra Qr.

Proot The equaiity in Example I shows that the maximal ideal m is the

B-orthogonal complement to the line,t"/. This line is therefore an invariantly
defined ideal the annihilator olthe maximal ideal (Corollary l). For a nonzero

ideal 1 the inclusion 1a s m holds and consequently the inclusion ma q 1.

Remark: The symboi [fi//] admits the integral representation

Lh[]

where the integration is along the small cycle, given by the equations lr 2 : dr

(see Section 5.18). One can take this lormula as the defintion of the symbol and,

starting from it, prove the properties ofthe symbol and with them also Theorems

1 and 2.

drr/r\":(.-/ lA

i
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5.12 The index of a singular point of a real germ

Let/;(R', 0)-(R', 0) be a real-analytic map of multiplicity tr < 6 and let eJ
be its local R-algebra. Choose orientations in both R".s and denote by,/ the
Jacobian, comput€d with respect to these oriented coordinates.

Consider any form d : 0/ --+ R. Define the bilinear form B, on Qy by the formula
B,(9, h\ - u(s.h).

Theorem (rfte signature lbrmula): The signature of the bilinear Jbrm Bn is equal
to the index of the sinE ar point 0 of the germ f if d(J ) > O.

The proolis obtained by a limit procedure from rhe proposition given below
concerning functions on a finite set with an involution.

A complex function on a set with involution r is said to be ! _real it q\ta) : q1a)
(a polynomial with real coefficients is r-real for the involution of complex
conjugation). All the r-real functions on a set of 1r points lorm an R-algebra R
of R-dimension p. For each function q € R we define a bilinear form B, on R
by the formula Bq(h, g) : tA@)h(a)g(ai). Suppose that rp does not vanish at
any of the points c;.

Proposition l: (1) The ualues of the form B, are real. (2) The form B, is nondegener_
ate. (3) The signature of the form Brisequal to (p+ _ tp- , where E+ is the number
offixed points of the inaolution on which E > 0, and E- is the number on which
E<0.

Proof: Under the action of the involution the set decomposes into invariant
subsets, consisting of one or two points. Therefore it is sufficient to prove the
proposition for one point and two point sets, for which it can be verified
immediately.

We prove the signature formula for the special bilinear form B. The root 0
of the systeml : 0 breaks up for small real regular values € into the I complex
roots ol the system /: e. Let at, ..., a, be these roots. The involution of
complex conjugation acts on th€ set of these roots. We fix p real polynomials
er, . . . , e, determining an R-basis lor the local algebra R{x}/(/) and, consequently,
a C-basis for the algebra O{x}/(/). Denote the spaces of their trJinear and
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C-linear combinations by 16 and L. Considcr the bilinear form B' on the space

16 defined by the formula

- ola,\hla.l
B'(n h\: ) "

' J(ai)

Lemma 1: The signature of the form B' is equal to the number of real roots of the

system f : t, counted with the signs of the Jacobians at ai.

Corollary: The signdture of the form B' is equal to the index at zero of the map f
(see Proposition I of Section 5.3).

Lemma I follows from Proposition I and the lollowing lemma.

Lemma 2: The restrictions of the functions of L* on the set of complex roots (a 1, . . . ,

ar), antl only these, are t-real for the inuolution r of complex conjugqtion.

Proof: The t-reality of the restrictions is obvious. Therefore it is enough to
prove that the map of the p-dimensional space Ltr to the p-dimensional space

ofx-real functions does not have a kernel. But for the restriction map offunctions
on L to the set (a1, . . . , a) only zero maps to zero (Section 5.10). Lemma 2 is

therefore proved.

Let s tend to zero. The form B' will then tend to a well-deflned form B,

corresponding to the linear form co( ) : l lfl (Propositions 1 and 2 ol Section

5.11). The limit form B is nondegenerate, since its complexification is non-
degenerate (Proposition 3 of Section 5.I l). Consequently its signature, like the

signature of the pre-limit lorm B', is equal to the index of the getm f at zeto.

Thus the signature formula has been proved for the special linear form ae (notice

that qo(./) : p > 0). Now let s be an arbitrary linear form on the local

tr-algebra, positive on the Jacobian. Join a and ao by a segment in thc half-space

of linear forms positive on the Jacobian. To the points ol the segment there

correspond nondegenerate bilinear forms (Theorem 2 oi Section 5.1 1). Thelefore
their signatures are the same.

Remark; In [23] the signature lormula is used to estimate the index of a singular
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point ofa homogeneous vector lield in R'in terms ofthe degrees ofthe components
ol the neld. ln [100] the signature formula of Proposition 1 is used to estimate
the total index ofthe singular points ofa polynomial field in a domain oftr', defined
by a polynomial inequality P > 0, in terms of the degrees o[ the components of
the field and the polynomial P (the signature formula is applied in just the same
way as in Lemma 2). The estimates are sharp. They generalise the wellknown
inequaiities of Petrovskii-Oleinik [l40] in real algebraic geometry.

5.13 The inverse Jacobian theorem

Let U c C' be a bounded domain with boundary and let /: U --+ C, be a holo-
morphic map. Let us assume that the system/:0 has roots in U and that the
image of the boundary /(dU) does not contain 0. Let V be the connected
component ol0 in al'\/(dU). The number of roots of the system jf-, : 0 in
U, taking multiplicities into account, is the same lor all y in Iz (this follows lrom
Proposition 3 ol Section 5.4). Let J = det(Afllx) and let ir be a holomorphic
function on U.

Theorem (concerning the inuerse J acobian\: On V there is a (unique) holomorphic

Jinction rp such that for any regular ualue y, tp(y) : Uh(aillJ (ot), where the summa-
tion is ooq the set of all the roots aj of the system f - y : 0 in U.

A prool of the theorem, based on an n-dimensional version of Abel's theorem
on the trace, is given in Section 5.18. We use this theorem straight away.

Suppose that the map/has a single zero in the ball B at its centre a and
that the function ft is holomorphic in B.

Corollary l: Let ai be the roots of the systemf : t in B. As the regular ualue t tend.s

to zero the function

tP(c) : 8h(a)lJ(at)

has a limit.

Definition: The limit in Corollary 1 is called the symbol lhlfl".
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Let {I} be a deformation of the map / and {n"} a deformation of the
function y'r.

Corollary 2: Let t, tend to zero in such a vtay thot all the roots a; of the system
f" : 0 in B remain nondegenerate. Then

hm th(at)l det(afl d x)(a ) : lh I fl ".

Theproof is obtained by applying Corollary l to the map l :C" x Cr-6,, 6*
and the function H defined by the formulas I(x, e) : fi(x), e) and H(_x, e) : lr,(x).

We return to the situation of the inverse Jacobian theorem.

Corollary 3: The Junction q(il:rlhlfl., is analytic on V. Here the summa-
tiotx is orer the set of all roots of the system f y : 0 in LI.

Proof: Take a regular value of the map close to y. The preimages of this value
fall into groups lying close to the roots ai. Let the regular value tend to J.
On proceeding to the limit in each of the groups we get that the holomorphic
function in the theorem is t[h//]",.

The Euler-Jacobi formrila follows from the inverse Jacobian theorem. Let/
be a polynomial map ofC'to C'whose components are polynornials ofdegreees
m;. Let fn:C,'+C" be the polynomial map, whose components are the highest
homogeneous terms of the components ofl Suppose that all of the roots d, of
the system /: 0 are simple and suppose that the system /o = 0 has a single
root, the point 0.

Corollary 4 (the Euler-Jacobi formula): For any polynomiul h of degree less
than the degree of the Jacobian (d,eg h < m1+. + m, n),

Zh(a;\lJ(a):0.

Proof: Consider C' to be the coordinate plane x,11 : 0 in O,+ 1. Letji and fi
be homogeneous polynomials in C"+ I such thatf(.r, l) :r(x), fi(x, l) : h(x) and
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degf :6"9.1, rlegi'= degft. Consider the map P: (rD'*1, 0)-(C,+r, 0) wirh
components Pr :1, for i : l,..., n, and P"+ I : x,+ r. Then 0e C,*r is the only
rootof thesystem P : 0. The roots olthe system p : (0, e) (where (0, e) e C" x Cl)
are points of the form bi =(a6, t), where a; is a root of the system/:0. At
every root b; we have rhe equality lb)lde{aP lal)(b) = €pi1(4r)/./(4r), where
p: degh (mL + +m^ x) (,t denotes the coordinates x 1 , . . . , ,r, r r in C,* r).

Summing over all the roots we get

ti;(bi)/det (dPlc.r)(b ) : e,'h(!r)lJ (e t).

According to Corollary I the sum on the left must have finite limit as €-0.
For p < 0 this is possible only if:l(ar)/./(ar) : 0.

Remark 1: The Euier Jacobi lormula remains true if in place of the polynomials
h and f with fixed degrees we consider polynomials with lixed quasidegrees. Other
generalisations ol the Euler-Jacobi formula are to be found in [85] and [99].

Remark 2: The Euler Jacobi formula partially explains the existence of thelimit
in Corollary 1. Let/be a polynomial map and let ft be a polynomial for which
deg ft < deg./. Suppose that the system/: 0 has exactly one multiplo root 0 and
some simple roots. Suppose also that in this system there are no roots,,infinitely
far away". Then as the regular value e tends to zero some of the roots will tend
to 0 and the remainder to the simple roots Dr. [n this case it follows lrom the
Euler-Jacobi formula that the limit of Corollary I exists and is equal to

-'h(b)lJ(bt).

Remark 3; The Euler-Jacobi formula has applications in real algebraic geometry
(see [ 140], [100] ).

5.14 Properties of the symbol [l//],
Proposition l: Suppose that the getms g. and f. are A-equiadlent, SO: A(1fO.
Then

lhlll,: lh.deL Alsl".
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Proot Consider the deformation /- e of the germ f and the deformation
S,: A(-f - t) of the germ g. They have the same zeros ai in a small ball. At
each zero al we have the equality (0g,lix)@t): A(eQfldx)(a). Therefore

2h(a1) ldet(tf I dx)lat) : 2h(s)det A(a t\ ldet (d s "ldx)(.at).

On leiting the regular value s tend to zero we get the required equality.

Proposition 2: If he 11.., then lhll). = 0.

(1") Suppose that in addition the differentials dfi of all the componentsf do
not have zeros in a punctured neighbourhood of rz. Let h : 2gk.[k. We shall show
that for every k the symbollgt,fylfl" : 0. The hypersurfacei = 0 has no singular-
itjes in the punctured neighbourhood of a (by hypothesis). For er : 0 the roots
4i ol the systemfj = €j lie on the hypersurfacef : 0. For general e (under the
condition e t : 0) all the roots are simple and each term oI the sum X(g * fx\@iJlJ (a)
is equal to zero. Proceeding to the limit we obtain the required equality.

(2") Each germ g of finite multiplicity is ,4-equivalent to a germ / for
which the additional hypothesis of t' holds. For the proof it is enough to put
.l' : i' + (x! + "'+ x;v), where j1 is the Taylor polynomial of degree N - 1 of
the component gj (see 1" of the Lemma of Section 5.9) and N is sufficiently large
(N > p,[S] ) (see Proposition 2 of Section 5.5).

(3") Suppose that 9: ,41/ satisfies the hypothesis of 1" and helr.,. -fhen

lhlsl.: lh.detAlfl, : 0, since h detAet"..:1,.".

5.15 The nondegeneracy of the bilinear form

The symbol [ir//], depends only on the image of I in rhe algebra O/,,
(Proposition 2 ol Section 5.14) and consequently determines a linear function
on the algebra 0;,,. In this section we consider the bilinear form B on the local
algebra of a germ ol finite multiplicity constructed lrom this Iinear function.

Proposition l: On the decomposition of a root ol fnite multiplicity with a non-
degenerote bilinear form only roots with nondegenerate forms arise.

Proof: Let/be a germ of finite multiplicity at a and t the CJinear space spanned
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by the iunctions €1,..., €p: whose germs form a basis for the local algebra ol
the germl Let {l} be a deformation of/and U a sufficiently small neighbour_
hood of a. The natural projection r: l, --+ A /,(U ) of the space t to the multilocal
algebra of the systemj6 :0 is an isomorphism for small e (the theorem of
Section 5.10). Consider the bilinear form B, on l, defined by the formula

B'(s, h\ : >ls hlil",,

where the summation is taken over all the roots of the system I : 0 in U.
This lorm is the direct sum of the bilinear forms of the roots ai. The matrix
A' : lB"(e;, e1\j ofthe form B'depends analytically on e according to Corollary
3 (Section 5.13). By hypothesis the bilinear lorm ol the germ/ is nondegenerate,
that is, det'1" 10. Consequently for small le det,4. + 0. For such e the bilinear
forms of all the roots are nondegenerate.

Proposition 2: The bilinear form of the aerm oJ the pham map is nondegenerate.

The prool is obtained from the following computations. The local algebra
of the Pham map <D' is generated by the monomials _,ct : x1' . . . xl.,
0 5 kr < nrr,...,0 S k" < m". The monomial ,x',wherer:,r1 - 1,...,mn- 1, is
proportional to the Jacobian olthe Pham map. For this monomial tx./O.l : L
For all other x* of the local algebra [xr/O.] : 0. This follows from the Euler
Jacobi formula. The bilinear form of the germ ol the pham map is non_
degenerate: dual to the basis xr lor e.- is the basis x' r.

Proposition 3: The bilinear form o;f any oerm ol fnite multiplicity is nondegenerate.

Prooft .{-equivalent germs have their bilinear forms either both degenerate or
both nondegenerate (this follows from proposition 1 of Section 5.14). Every
germ of finite multiplicity up to /4-equivalence can be obtained from the germ
ol a Pham map by a small delormation (Section 5.6). The bilinear lorm
of a Pham map-germ is nondegenerate. proposition 3 now follows lrom
Proposition t.

5,16 The trace theorem

Consider a mapl of complex manifolds of the same dimension, for which every
point has a finite number ofpreimages. Let ro be a /t-form on the source manifold.
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Definition: The tqce of the k-form ro by the map / is the /<-form on the target
manifold, whose value on each k-vector is equal to the sum of the values of the
form ro on all the preimages of this k-vector. This form is defined for regular
values off It is denoted by Tror.

Theorem (Abel): Let l(x) : xp qntl ro = g dx, *'here g is a function holomorphic at
0. Then the form Tra, defned in a punctured neighbourhood of 0, continues
holomorphicalLy ouer 0.

Proof: Trcr.r : rpdy,where,p(y):2s0'tr\(1lp).y(tio)-t. Represent I as a power
series in _y1/2. The coefficients of the non-integral powers of .f, are equal to 0,
since E is single-valued. There are then no negative powers of y in the decom-
position, since each term has degree not less than (l/p) - L

Corollary l: Let f be a one-tlimensional ramified 1rfoL1 coaering. Then the trace of
a holomorphic;form on the source space continues holomorphically to a.form on the
larqel spacc.

To lormulate the trace theor€m in the n-dimensional case we make the
lollowing

Definition: A map / of complex manifolils of the same dimension is said to be
of fnite type if the sum of the multiplicities of all the preimages of each point
has a constant finite value. This value 4 is said to be the number of leaoes ol
the projection /: M + N, a cov€ring of finite type of M over N.

Proposition: A map of fnite type is proper.

Prooft The point y has p preimages (counting multiplicities). Every poini
sufficiently close to y has p preimages (counting multiplicities) close to the
preimages of y. Consequently there are no other preimages and this means that
the map is proper.
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Corollary 2: The set oJ regular ualues of a map of fnite type is open and euery-
where dense.

Theorem: The trace of a holomorphic form for a map of finite type extend.s holo-
morphicolly ouer the whole torget manifold.

The prool may be obtained lrom Abel's theorem in the following way.
(1') For the map /(x1, ..., x,) : (xi, xr, ..., ,r,) the theorem is proved just as

for Abel's theorem.
(2") A point of the source manifold is said to be good if there are systems of
coordinates in neighbourhoods of the point and its image in which the map is

described by the formula ol (l').
A point of the target manifold is said to be good if all its preimages are good.
In a neighbourhood of a good point in the target the theorem lollows

from (1').
(3') The set of bad points in the source has codimension greater than 1. For
the proof let us consider the following thre€ sets in the source:
(1) the set of singularities ol the set of critical points of the map;
(2) the set of critical points ol the restdction of/ to the nonsingular part ol the
set ol critical points;
(3) the set ol critical points of/at which the multiplicity is greater than at
neighbouring critical points.

It is not difllcult to prove that the codimension of each of these sets is greater
than 1 for maps of finite type, and all the remaining points are good.
(4') The set of bad points in the source is analytic, hence the set of bad points
in the target is analytic (Remmert's theorem) of codimension greater than 1.

(5") By Hartog's theorem the trace extends holomorphically to the set of bad
points.

Another proof of the trace theorem is given below, without reference to the
theorems of Remmert and Hartogs.

5.17 The integral repres€ntation of the trace

Letf: M - l/ be a map of finite type onto a domain Izof C" and let ro be a hqlo-
morphic r-form on M. Choose in C" coordinates yr, . .. , y,. Define the function

[Tr@] at regular values of the map as the coelficient in th€ representation

7111 : fTrra)dyr a...,r dy".
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Consider the map i/'?:M--+R', xr'(ll(x)1'?, ..., ll,lx) t).
Let rl be a positive vector in R'. Define the polydisk I/, by the conditions

ly, '< dr, and its shell ?5 by the conditions l.yrlt : ,)u.

Theorem: Let 6 be a noncritical ualue of the map f 2 such that the polydisk V6

togethet \rith its shell Lies in V. Then in the polydisk the function lTral admits
t he int e gt ol re pr esentation

lrl llr,,;lt vt : I I Lo

t2nit' )t .nt ft y )'

--here the c1'cle l5 is tlefined by the cond.ition lfl2 : 6.

We define a merornorphic n-form on M, depending on the point y of V, by
the formula cor: <'llQriYnUt - yt)1.

We define the map lf - yl2 : M - F1", depending on the parameter y € I/, by th€
formula xr '(lll(x)- )r lt, ..., -f,(x) - y,l'). The preimage ol a regular value
pe (R*)'is a compact manifold for sufficiently small y and p. Denote it by fr.o.

Lemma l: In a neighbourhood of a regular ualue y ol f

lTrutl = I u"

(for eoery sfficiently small oector p with positiue components).

Proof: The preimage of a small neighbourhood l/ of a regular value consists

of ,u non-intersecting neighbourhoods U;. We shall identify Uj with [t/ by means

of/ and shall use in U; the system of coordinates fr, . ., f" In Uj let
,'1 : g;dfL n . .. ,r dl,. Then [Tro]] : tgj. On the other hand, for small p the cycle
f,,, decomposes into I tori I, lying in the neighbourhoods Uj (and defined in
them by the x equations .ft- yiz : p). According to the Cauchy integral
formula

n(n - v!)
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In our notations this equality takes the form g;(y): J- o-r". Consequently
j.,,t.,y : !ri()r). The Lemma is proved.

Lemma 2: For euery regular ualue off suJJiciently close to zero the tycle lr.t,for
smaLl p ( p < po(-y)) is homologous to the c!-cle f5 in the complement of the set of
singularities of the fotm tor.

The proof is based on the fact that the preimages of a regular value for two
homotopic smooth proper maps are homologous.
(1") The cycle f5 is defined by means o[ a nondegenerate system of equations.
A small change in these equations only changes the cycle slightly. For any y
from a suflicientiy small neighbourhood of zero 176 the cycles f(r) : 1-,r.u 1or-
a smooth homotopy of fd to I.),6 as r varies from 0 to 1. Analogously, for
yeWn and for any sulficiently small pER'{lp < po(-v)) the cycles f(.) = f}.r+,e
form a smooth homotopy of fr,5 to fy,o+p.
(2') Consider the map M x R - R', depending on the parameter ye Iu, sending
the point (r, t)to the point with coordinates lL&) - ttl' - rdi. Let p be a regular
value of this map so small that lp I < po(/) and that th€ cycle fr., decornposes

into p tori T; (see Lemma 1). The preimage of p defines a smooth (n + 1)-

dimensional submanifold in M x R. The pro.jection to M of the part of this
manifold distinguished by the inequalities 0 < r < 1 is a film, stretched between

the cycles f1.,r ?nd fr., : ET;. The Lemma is proved, since neither the lilm nor
the homotopies produced touch the singularities of the lorm oy.

Proof of the theorem: (1') The representation (*) holds for small y. In fact, by
Lemmas 1 and 2 for small y

J ,,,, - J- .u" -[Tro-,lr1r.

(2") From (1") there follows the trace theorem for r-forms.
(3') From the trace theorem there follows the holomorphicity ofthe continuaiion
of [Trco] over the whole of I/; The right hand side of (*) is holomorphic in the
polycylinder /r. According to (1") the left and right hand sides coincid€ in a

neighbourhood of zero; accordingly they coincide on I/,1.
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Corollary: There is an integral representation for the trace of a k-form on
n-dimensionaL space.

Consider, for example, the trace of a l-form on C2, Trro: atdyt*azdyz.
Multiplying by dyr, we get

aiyt r'. clyz = (Tr@) 
^ 

d.yz : Tr(at t I*dyzl

and we get an integral representation for the coefficient a1 as [Tr(ro ,., f*dyz)1.
Analogously one finds integral representations for the coefficients of the

coordinate form of the trace of a /r-form in C".

Remark: There is yet another proof of the trace theorem in [84]. There one
can also read about applications and generalisations of this theorem.

5.18 Proof of the inyers€ Jacobian theorem

Consider the domain/-r(/) : M and its mapflM: M + V.lt is of finite type.
Consider the n-form ot : h dx t t, ... a dx,. On an open dense set in Z ol regular
values of.f, lTrul :271a.1111oJ, and by the trace theorem the function [Trco]
is holomorphic in Z The theorern is proved.

Corollary:

fh,n: 1 |
(2ni| Jx ,1= 5,

hdxl n ... ,n, dx,

Proof: [h//]: tim[Tror(y)]: [Trra](0), and
t_0

from the integral representation ol the trace.

therefore the corollarv follows


